HAZARD MEASURE AND MEAN RESIDUAL LIFE ORDERING:
A UNIFIED APPROACH

Majid Asadi and D.N. Shanbhag
Technical Report 99-11

July 1999

Center for Multivariate Analysis
417 Thomas Building
Penn State University

University Park, PA 16802

Research work of authors was partially supported by the Army Research Office
under Grant DAAHO4-96-1-0082. The United States Government is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding any
copyright notation hereon.

R 19991103 119




el

SF 298 MASTER COPY

KEEP THIS COPY TOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE

Form Approvea
OMB NO. 0704-0188

AuDIIC rEDOMING DUrARN 107 this \ Of If 1] (]

GO  hOur Dar resSDONSe.
jathenng ana mantainng the cata anda \g and

g the

1g the tme tor
ot nfol 1. Sena W reg:

q instructions.

. ' NS DUFGSN SSIMALES OF ANy OLNEF ASOBCE OF this
S2ilection of INforManen. INCIUGING SUGGESLIONS 107 rEAUCING tNis burden. to Washington Headduaners Servicas. Oirectorate tor mtormation Ooeranons ano Reoons. 1215 Jetterson

Zavis Migrway Suite 1204 Arington. VA 22202-4302. ana 1o the Othice of Management ana Buaget. Paoerworx Reduction Praiect (0704-0188), Wasnmgton, OC 20503.

9

1. ~GENCY USE ONLY [Leave olank) 2. REPORT DATE

July 21, 1999

Technical -

3. REPORT TYPE AND DATES COVERED
uly 1999

4. T.TLE AND SUBTITLE

Hazard Measure and Mean Residual Life Ordering:
A Unified Approach

6. AUTHORS)
Majid Asadi and D.N. Shanbhag

5. FUNDING NUMBERS

DAAH04-96-1-0082

7. SERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Center for Multivariate Analysis
417 Thomas Building

Department of Statistics

Penn State University
University Park, DA 16802

8. PERFORMING ORGANIZATION
REPORT NUMBER

99-11

3 :=ONSORING  MONITORING AGENCY NAME(S, AND ADDRESS(ES)

(".S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Alo 3SSIE.5E-mA

1

-

. SUPPLEMENTARY NOTES
The views. opinions and/or findings contained in this re

_ i¢: ] ort are those of the author(s) and should not be construed as
an official Department of the Army position. policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public retease: distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT :Maximum 200 woras)

arbitrary probability distributions and study their basic properties.

The hazard rate ordering is applied frequently in reliability to compare two probability
distributions on Ry such that they are both absolutely continuous (w.r.t. Lebesgue measure)
or both purely discrete (concentrated on the set of non-negative integers) via their hazard
rates. Kotz and Shanbhag (1980) extended the concept of hazard rate introducing new
concept of hazard measure, applicable to any arbitrary distribution on the real line; in
particular, this concept avoids the restriction that the distribution be absolutely continuous
or purely discrete. These latter authors have also extended the concept of mean residual life
function and have given related representations for distributions. In this paper, we introduce

the concepts of hazard measure ordering and mean residual life ordering to compare two

4. 54 TERM . :
14 SUBJECTTERMS  portial Ordering; Hazard rate, Hazard measure, Mean

residual life function. Stochastic ordering

15. NUMBER IF PAGES
13

16. PRICE CODE

7 SEoURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
R REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescnoea by ANSI Std. 239-18
26R.1072




Hazard Measure and Mean Residual Life Ordering: A Unified
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Abstract

The hazard rate ordering is applied frequently in reliability to compare two probability
distributions on R such that they are both absolutely continuous (w.r.t. Lebesgue measure)
or both purely discrete (concentrated on the set of non-negative integers) via their hazard
rates. Kotz and Shanbhag (1980) extended the concept of hazard rate introducing new
concept of hazard measure, applicable to any arbitrary distribution on the real line; in
particular, this concept avoids the restriction that the distribution be absolutely continuous
or purely discrete. These latter authors have also extended the concept of mean residual life
function and have given related representations for distributions. In this paper, we introduce
the concepts of hazard measure ordering and mean residual life ordering to compare two

arbitrary probability distributions and study their basic properties.
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1 Introduction

Partial orderings relative to probability distributions is an important criterion in probability
and statistics. There are several ways in which one can assert that a random variable X (or
equivalently, the corresponding distribution function F) is grater than another random variable
(or its distribution). The simplest way to compare two distribution functions is via their means
( if they exist) or their variances ( when the means are equal ). However, such comparisons

usually are not informative, because they are based on only one or two specific characteristics.

In reliability theory, usually partial ordering of life distributions are based on functions such as




survival function, hazard rate (HR) and mean residual life (MRL). There is an extensive literat-
ure dealing with the subject of partial orderings between distributions and their preservations
under reliability operations such as convoluting, mixing and adopting £ — out — of — n systems.
In this note, we study certain types of partial orderings between univariate distributions and
their relationships, introducing, in the process of doing so, some new partial ordering in terms
of the generalized concepts introduced by Kotz and Shanbhag (1980); most of the literature in
reliability assumes that the distributions are absolutely continuous or purely discrete, and we
try to escape here from such constraints. Kupka and Loo (1989) have previously introduced

and studied some reliability properties along the lines of the present investigation.

2 Some basic definitions and auxiliary results

We need the following definitions and auxiliary results in the present investigation:

Definition 2.1 Let X be a real-valued random variable with E(X*) < oo. Define a real-valued

Borel measurable function m on R satisfying
m(z) = E(X - z|X > 1) (1)

for all z such that P(X > z) > 0. This function is called the mean residual life function (MRL

function for short).

Definition 2.2 Let F be a distribution function on R. Consider the measure vr on (the Borel
o — field of) R such that '
dF (z)

vr(B)= [ = 2

F(B) 5 1= F(22)) (2)

for every Borel set B. This measure is called the hazard measure related to F.

Theorem 2.3 Let b(< o00) denote the right eztremity of the distribution function F of a
random variable X with E(X*) < oo and m be its MRL function. Further, A = {y :
limzyy m(z) exists and equal 0}. Then b = oo if A is empty and b = inf{y : y € A} if A

is non-empty. Moreover, for every —co < y<z <b

1-F(z-) m(y) z dz
F @ ), m? ®

and for every —o0 < 1 < b, 1 — F(z—) is given by the limit of the right hand side of (3) as

y — —00.

Corollary 2.4 Let X be a non-negative continuous random variable with distribution function
F and E(X) < 0o and let b be the right eztremity of F. Then, for every z € [0,b),

l1-F(z-) = -:%ezp{— /Ox rrzi(i)}’ (4)
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where m 1is as defined in Theorem 2.3.

Theorem 2.5 Let vr be as defined above and v§. be continuous (non-atomic) part of vy and let

H(z) = vg(—00,z]. Denote by b the right extremity of F. Then b = sup{z : vr(z,z + 6) > 0}

for some 6 > 0, and the survival function F(z) = 1 — F(z-) is given by

Fz)=[ JI (1-vr(z,))]ezp{-H(z)} z<b, (5)
zr€D:

where D is the set of all points y € (—00, z) such that vp{y} > 0. ((2.5) also holds with ‘z < b’
replaced by ‘z € R’ provided we define exp{~oo} to be equal to zero.)

Corollary 2.6 If —00 < a < oo and the restriction of F to (—00,a) is continuous (i.e. if vp

is continuous or non-atomic on (—00, a)), then
F(z) = exp{-H(z)} for all z € (-00,a),
where H(z) = vp((—00, z]) and we define exp{—oo} = 0.

We have taken the definitions and results appearing above from Kotz and Shanbhag (1980).
Specialized versions or variants of these have appeared in Cox (1962, 1972), Jacod (1975) and

other places.

3 Main Results

Let X and Y be two real random variables with distribution functions F and G, respectively
and let vr and vg be the hazard measures and mpg and mg, the mean residual lives relative to F
and G respectively. First we begin with the definitions of some existing partial orderings, with
obvious modifications wherever appropriate in the light of the findings of Kotz and Shanbhag
(1980).

Definition 3.1 The random variable X is said to be smaller than the random variable Y in

the usual stochastic order, denoted by X <,Y (Y>,X) if
F(z) < G(z), forallz€R, (6)
where F(z) = 1 — F(z) and G(z) = 1 — G(z) are survival functions of X and Y, respectively.

The usual stochastic ordering is being used in many areas of statistics and applied probability.
For some standard references on this, we refer the reader to Marshall and Olkin (1979), Ross
(1983) and Shaked and Shanthikumar (1994).




- Definition 3.2 Let X and Y be two random variables with X* and Yt integrable and MRL

functions mp and mq respectively. Then X is said to be smaller than Y in the MRL order,
denoted by X <, Y, if

mr(z) < mg(z) for all z < min{bx, by}, (7)

where bx and by are the right extremities of the distributions of X and Y respectively.

It can be easily shown that X <,,, Y if and only if, in obvious notation,

[ F(t)dt
I G(t)dt

is non-increasing on {z : G(z) > 0} and it implies that bx < by.

Definition 3.3 The random variable Y is said to be less than the random variable X in the
the hazard measure order, denoted by Y <pm X, if vg = vr + p with g as a non-negative

measure on R, where vr and v are the hazard measures of F and G, respectively.

In particular, if F and G are absolutely continuous (w.r.t. Lebesgue measure), we shall refer
to hazard measure ordering as the hazard rate ordering and take ‘hr’ in place of ‘hm’. It is
well known that in the restrictive case referred to here, distribution functions F' and G possess
the ‘hr’ ordering if and only if (E,gl) is an increasing function on {z € R : G(z) > 0} and
vr({z € R : G(z) = 0}) = 00 We shall now show that the result in question holds without the

absolute continuity of F' and G.

Theorem 3.4 Let X and Y be random variables distributed with df's F and G respectively.
Then'Y is less than X in the hazard measure order if and only if gg—% is an increasing function
on{z€R:G(z) >0} andvr({z€ R:G(z)=0}) =0

Proof: We have from representation (5)

5o = exp{(rrw(fz)w(zm (log(1 - vr{z,}) - log(1 — ve{s.})))

- (HP (@) - HO(2))}, z < min{br,bg}, (8)

where br and bg are the right extremities of F' and G respectively, DY) is the set of discontinuity
points of vr lying in (—o00,2) and H,fF)(z) = VFc((—00, z]) with vp. as the non-atomic part of
vr (and D and HC(G)(x) are defined similarly for G). If y < z < min{bp,bg} and Y <pm X,
then it follows from (8) that

oo

(z)  Fly),
G(a) % G(y) ©)

Y

S




to see this note that

ggz; - Mem{ 2 > Awe{z ) - (vr{z.})*}/k

R N T ]
+ VG'C((Z/,I])—’/F‘,c((!j,l’])}-

The assertion Y <um X implies that b = bg. (Note that b > bg = vp((bg,o0)) >
vg((bg,0)), and bp < bg = for an a smaller than b and sufficiently close to br, vr((a, br]) >
ve((a,br]).) Because of the left continuity of F and G we have then the ‘only if’ part of the
result on view of (9). To prove the ‘if’ part, note that under the given condition, br = bg
and the exponent of (8) is an increasing left continuous function on (—o00,br) with limit as
£ — —00 to be zero. Consequently it follows that for each z € (—00,bF), vr{z} < vg{z}, and
we have vgc(. N (—00,br)) = vre(. N (—00,bF)) + p(.) with 1 as a non-negative measure. As
vr({z € R: G(2) = 0}) = 0, we have then that Y <jm X. { Note that if b is a discontinuity
point of Fi.e bp < oo with vrp{br} = 1, it is also a discontinuity point of G giving vg{bg} = 1.}
Hence we have the result.

The following theorem and example show that the hazard measure ordering is stronger than

the usual stochastic ordering.
Theorem 3.5 If X and X, are two random variables such that Xy <pm X1, then X3 <o Xi.

Proof: Let F; and F) denote the survival functions and v, and v, denote the hazard measures

of X and X respectively. Then by the representation 5 we have the right extremities of Fy,

the distribution function of X, and F3, the distribution function of X, to be equal with
Fiz)=[ [T (1-w{z.})]ezp{-Hic(z)} 1 € (~00,0), (10)

IrGDI'.‘l

7 = 1,2, where b is the common right extremity of Fy and F;, D;, is the set of all points

y € (—oo, z) such that v;{y} > 0 and H;.(z) = vf(—o00, z] where v¢ is the continuous part of v;,

where v; is the hazard measure relative to F;. Now, since vo(D) > vy (D) for every Borel set D,

we can easily seen that Fy(z) < Fy(z) for every z € R.

Example 3.6 Let X3 be a non-degenerate random variable with survival function F, and right

extremity b < co. Define X| = X, — 1; the survival function of X, Fi, is given by

Fi(z) =F(z+1), z€R.

Clearly then X, <, X but the right extremities of X, and X are different and hence they do
not obey the corresponding hazard mcasure ordering. There exist also other examples in the
literature (see for example Alzaid (1988) and Shaked and Shanthikumar (1991).

5




The MRL ordering is a well known concept in the literature, where it is assumed usually that
random variables are non-negative and absolutely continuous. It is known that for absolutely
continuous random variables, the MRL ordering is weaker than Ar ordering (see Shaked and
Shanthikumar (1994)). Indeed this last result with ‘hr’ replaced by ‘Am’ holds for more general

random variables that are not necessarily absolutely continuous and non-negative.
Theorem 3.7 IfY <pm X, and X+t and Y* are integrable then Y <, X.

Proof: Suppose Y <pm X. As observed in the proof of Theorem 3.4, this implies that bg = b,
where br and bg are the right extremities of the distributions of X and Y respectively. In view

of Theorem 3.4, with the notation used in the theorem, we have then

F(z) < F(z +1t)
G(z) ~ Gz +1t)"

z,z+t € (—00,bF) and t > 0, (11)

this gives
Jor—= G(z + t)dt . or e F(z +t)dt
G(z) - F(z) ’
yielding that ¥ <., X.

z € (—00,bF), (12)

Singh and Vijayaree (1991), using a counter example, showed that the MRL ordering is not
closed under the formation of k¥ — out — of — n systems. A comparison of random sums based
on the MRL ordering is studied by Pellery (1993), while Shaked and Shanthikumar (1994)
showed that under some conditions the MRL ordering is preserved under the operation of
taking convolution. Shaked and Shanthikumar (1991) proved that under the condition that
the ratio of the MRL’s of X and Y is increasing, the HR ordering and the MRL ordering are
equivalent.

The following theorem now shows that the Shaked-Shanthikumar (1991) findings remain valid
even when the assumption that random variables are non-negative and absolutely continuous

is dropped.

Theorem 3.8 Let X;, i = 1,2 be two random variables with X,-+ , ¢t = 1,2 integrable and mean
residual life functions m;, i = 1,2, respectively. Let bx,, i = 1,2 be the right eztremities of the
distribution of X;, i = 1,2 respectively. Suppose that :—‘2((3 increases for r < min{bx,,bx,}.
Then X| <y X2 implies X1 <pm Xa.

Proof: The assertion of the theorem can be proved as follows. As observed earlier, X; <m, X2
implies that the right extremity of the Fy, the distribution of X}, is less than or equal to that of
F,, the distribution of X,. The increasing nature of :—;% for z < min{bx,,bx,} implies that
bx, > bx, and hence we have that by, = bx,. On the other hand, we have

F2(.T) — ml(x) fIFQ(Z)dI
Fi(z)  ma(z) [, Fi(z)dz’

z < min{bx,,bx,}.

6




Under the assumptions of the theorem. in view of what we have observed immediately after
Definition 3.2 and the fact that bx, = bx,, we have the right hand side of the last equality, and
hence its left hand side. to be increasing on {z € R : Fi(z) > 0} and vg,({z € R : F(z) =
0}) = 0. By Theorem 3.4. we have then X; <sm X», and the theorem is proved.

Theorem 3.9 Let Y <um X and Z be a continuous random variable independent of X andY
such that P{X > Z} > 0 (and hence also such that) P{Y > Z} > 0). Then

(XIX > 2) 2 (Y]Y > 2) (13)

Proof: Let us denote by F, G and H respectively the df's of X, Y and Z. We can then see
that (13) is equivalent to ‘

H(y dF(y/H )dG(y / H(y)dG(y) /H )AF() 20 for ali z € . (14)

[zv°°)

We can see that (13) is equivalent to the condition that

H(y)dF(y) /(_MH(y )dG(y / H(y)dG(y /( ROLAORL
forall z € R, (15)

[z,00)

which, in turn, is then seen to be equivalent, in view of Fubini’s theorem, to

/R min{F(z), F(2)}dH(2) / (G(2) - G(z))dH 2)

(=003}

/Rmz'n{G_(z), G(z)}dH (z) /(_ ](F‘(z) — F(z))dH(2) >0 forallz € R.  (16)

As the inequality in (16) is met trivially when G(z) = 0, it is clear that to have (13), it is
sufficient if we show that for each z with G(z) > 0 and hence F(z) > 0,

. x){/Rmm{l,% dH (2) /(_m](g%-nm(z)

... G(z2) F(2)
/Rmzn{l, G ) /<-w,11('17“(7) ~1)dH(2)} >0, forallzeR, (17)

where we read %(-3 =0if F(z) = 0 and g%f))- =0 if G(z) = 0. In view of Theorem 3.4, we have

then the theorem.

Corollary 3.10 Let Y <pm X and Z be a continuous random variable independent of X and
Y. Then, for all z with P{X + Z > z} > 0 (and hence P{Y + Z > z} > 0), we have

(XIX+2Z>2) 2 (YIY +2 > 2). (18)

Proof: The result follows on applying the theorem with z — Z in place of Z with z arbitrary.

T




Corollary 3.11 If the assumptions of Corollary 3.10 are met with distribution of Z as abso-
lutely continuous with increasing hazard function, on its support, when the support id assumed

to be an interval, then
Y +2Z <pm X + 2. (19)

Proof: The result follows from Corollary 3.10 as (19) is equivalent to that

fR z—1z)dF(z < th(z—z)dG()
JnH T Jn Bz - 2)dG()’

2 < bz + by, (20)

where bx and bz are the right extremities of the distribution of X and Z respectively, h is the
density corresponding to Z and H is the survival function relative to Z. (Note that H(z —.) is

the df of z — Z and we have, in obvious notation, bx = bz.)

Remark 3.12 Given any finite measure x on (the Borel o-field of) R there exists a sequence
{#n : n =1,2,...} of measures on R, that are absolutely continuous with respect to Lebesgue
measure, converging weakly to 4. In view of this. Theorem 3.9 implies that given Y < X, we
have sequences {Y; : n=1,2,..} and {X, : n =1,2,...} of random variables with distributions
that are absolutely continuous with respect to Lebesgue measure, so that Y, <pm X, for
each n. (Note that G can be expressed as product of F and the survival function of a finite
measure on R.) Also, if Z is independent of X and Y, we can claim the existence of a sequence
{Z, : n =1,2,..} of random variables with distributions that are absolutely continuous with
respect to Lebesgue measure, so that for each n, Z, is independent of X, and Y, and the
sequence {Z, : n = 1,2, ...} converges in distribution to Z. In view of observations, it is clear
that Theorem 3.9, Corollary 3.10 and Corollary 3.11 follow also from the corresponding results
when X, Y and Z have distributions that are absolutely continuous with respect to Lebesgue
measure. (To have, in particular, Corollary 3.11 here, appeal to the stability theorem relative

to hazard measures, given by Kotz and Shanbhag (1980).)

Remark 3.13 The definition of Y <;,, X above is tailored so as to subsume the definition
in Shaked and Shantikumar (1994) of Y <,, X as a special case. However, the definition
given in Shaked and Shantikumar (1994) is not universally followed; indeed, there are places in
which the ordering “Y <j, X” under the stated conditions is referred to as “X <p, Y. With
obvious alternations in the notation used in our results, one can produce the relevant results

that generalize the results in the literature employing the latter notation.

Appealing to Corollary 3.11, we can easily get the following results as further corollaries of the

theorem.




Theorem 3.14 Let X and Y be two independent random variables with distributions that are
absolutely continuous (with respect to Lebesque measure) with supports as intervals and in-
creasing hazard rates on the respective supports. Then X + Y has an absolutely continuous

distribution with interval support and increasing hazard rate on the support.

Proof: A random variable Z with absolutely continuous distribution having infinite right right
extremity and continuous density has an increasing hazard rate if and only if Z <p, Z + ¢
for each ¢ > 0; the “only if” part of the assertion holds even when the assumption that the
density is continuous is not met. We can construct a sequence {X, : n = 1,2,...} of random
variables converging in distribution to X, independent of a random variable distributed as Y,
such that X,,s have increasing hazard rate absolutely continuous distributions with infinite right -
extremities. (For example, if F is the survivor function of X and, for each n > 1, z,, is a point

such that F(z,) = ;17 and the hazard rate at z, is yn, then one can take X, such that

P{X,,Zz}:{li(x) ifz <z,

F(z,)e ¥ (E2n) if g > g,.)

We have then X,, < X, +¢ foreach ¢t > 0 and n = 1,2, .... Suppose Y™* is the random variable
distributed as Y and independent of {X,}. As Y* has an absolutely continuous distribution
with interval support and increasing hazard rate on the support, Corollary 3.11 implies that
>X,.+Y" <hm Xn+Y*+tforeacht > 0andn =1,2,... As {X;+VY,'} converges in distribution
to X +Y and X +Y has an absolutely continuous distribution, the stability theorem for hazard

measures given, for example, in Kotz and Shanbhag (1980) implies then that
X+Y <pm X+Y 4+t forallt>o0. (21)

It is obvious that the distribution of X 4+ Y has its support to be an interval and density (i.e.

some version of it) to be continuous. In view of this, (21) implies that the theorem holds.

Corollary 3.15 Let (X,,Y;), ¢ = 1,2,...,m be independent random vectors such that Y; <pm
Xy i=12,...m. If X; and Y;, i = 1,2,...,m have absolutely continuous distributions with

interval supports and increasing hazard rates on respective supports, then

m m
STV <hm 3 X
=1 =1

(Also Theorem 3.14 implies that the distribution of 3 ;2 , X; and 3%, Y; have interval supports

with increasing hazard rates on respective supports.)

Proof: We shall obtain the result by induction. Assume that it is valid when m = k, where k

is a fixed positive integer. Then, if we define (Xi41, Ya+1) to be a random vector independent

9




of (Xi,Y;), i =1,2,...,k and distributed as (X, Y)), we have by Corollary 3.11 and Theorem
3.14 respectively

M=

Xi) + Yieg

...
Il
—

k
Q_Y)+Yier <am (
i=1

Ma-

Shm (Q_Xi) + Xkt (22)

.
1
—

(on noting that Theorem 3.14 implies that Y%, X; has an increasing hazard rate absolutely

continuous distribution). Hence we have that the result holds for m = k + 1. As the result

trivially holds for m = 1, it follows then inductively that the result holds for all m.

Remark 3.16 In 1.B.1 on page 12 of Shaked and Shanthikumar (1994), a misleading sta.tement‘
has appeared. Without clarifying what really is meant by the hazard rate corresponding to a
distribution that is not absolutely continuous with respect to Lebesgue measure, the authors
claim that their definition of hazard rate ordering, possibly with a modification, holds even
when the distributions are not assumed to be absolutely continuous. Our findings in this paper

provide one with a clear picture of the situation in this

Remark 3.17 For an absolutely continuous distribution function F with density function f,
the reverse hazard rate is defined by ;ﬁ% on {z : F(z) > 0}. Taking a hint from this, if G is a
df on R, we can define the reverse hazard measure relative to G as the measure v on R such

that for every Borel set B
’ 1
ve= [ iy ePr(@)

where Pr is the measure determined by F, on R. Note that for every Borel set B,
vg(B) = vir(-B),

where H is df given by
H(z)=1-G(-z), z€R,

and vy is the hazard measure relative to H. Implications of this to our study are self-evident.

Theorem 38.18 Let F be a probability distribution function on R and F be the corresponding
survival function, and, for each o > 0, let X, and Y, be random variables with survival functions
Fe(z), z € R and 1 — F°(z), = € R, respectively. Then, with obvious terminology, we have

{Xa a > 0} decreasing in hazard measure and {Y,; > 0} increasing in hazard measure.

Proof: If 0 < a < 00, then for any Borel subset B of the set of points at which F is continuous,

we have the value of the hazard measure relative to the survival function F* to be fg F?_n'dF(z)’

10




- and, for any {z} with z € R or in particular, as a discontinuity of F', we have the corresponding

value (in obvious notation) of the hazard measure to be 1 — (1 —vr{z})*. Hence the first part of
the assertion follows easily. To prove the second part of the assertion, note that if @ and B are
as above, then the value for B of the hazard measure relative to the survival function 1 — F*(z),
T € R equals fg ‘j—fl;,:((ng(z), which is decreasing in «a if o is allowed to vary (because, for
each y € (0,1), 0_{_%"; = (fyl(z/y)""dz)“l). Moreover, in this latter case, for any {z} with z

as a discontinuity point of F, we have the value of the hazard measure as

Fo(z) - F*(z-) _ (1+ 1 — Fa(z) )“
1—-Fe(z—) Fa(g) — Fa(z-)) '
which is decreasing in @ when a is allowed vary (because if 0 < y < 2z < 1, we have z{,‘_’;a =

S (2)7 " du) " dv).
In view of what we have observed, we have then the second part of the assertion and hence the

theorem.

Corollary 3.19 Let {X, : n = 1,2,...} be a sequence of independent identically distributed

random variables. Then, for each integer m > 2,
min{Xy, ... Xm} <pm min{Xy, ..., Xn-1}

and
maz{Xy, ..., Xm=1} <am maz{Xy,..., Xn}

Proof: If we denote the distribution function and survival function of X; by F and F respect-
ively, then for each positive integer n, we have the survival functions of min{X,...,X,} and
max{Xj, ..., Xn} to be respectively F"(z), z € R, and 1 ~ F*(z), z € R. On appealing to the

theorem, we have the corollary.

Remark 3.20 Theorems 1.B.15 and 1.B.16 in Shaked and Shanthikumar (1994) are not valid
in their existing forms. (We do not claim here that typos or minor blemishes have noting to do

with this.) The following example illustrates as why this so

Example 3.21 Let X, and X3 be independent random variables with absolutely continuous
(with respect to Lebesgue measure) distribution functions F; and F; respectively with supports
[0, @] and [a,00), where a € (0,00). Note that we have here min{X;, X»} = X almost surely
and max{X;, X2} = X, almost surely, and it is not true that X; <j, X,, which contradicts
Theorem 1.B.15 of the cited reference ( claiming that, in the present case, min{X;, X3} <pr
max{X\, X2}). Also, on taking, ¥; and Y; to be independent random variables with distribution
functions aFy + (1 — a)F; and F, with a € (0,1) and F; and F; as defined above, respectively,
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we have that the hazard rate of Y; is greater than or equal to that of Y; almost everywhere.
However, it is not true that in this latter case, we have Y; <j, min{Y},Y;}, contrdicting

Theorem 1.B.16 of the cited reference.

Remark 3.22 Let (X, Z;) and (Y, Z2) be independent random vectors such that
X|Z1 <wm Y |2 almost surely.
Then we have X <., Y. (This follows on noting that
P{X > z}P{Y 2y} S P{X 2 y}P{Y 21} ifz<y,
because
P{X > z|Z1}P{Y 2 y|Za} < P{AX 2 y|Zi}P{Y 2> 2|22} a.s., 2 <y,)

and that X and Y have the same right extremity. (This result essentially extends Theorem
1.B.8 of Shaked and Shanthikumar (1994).)

Remark 3.23 Using a straight forward argument, essentially a minor version of that given
by Shaked and Shanthikumar (1994) to prove their Theorem 1.B.4., one can stablish that the

following generalized version of the theorem referred to of Shaked and Shanthikumar holds:

Theorem 3.24 Let (X;,Y), i = 1,2,...,m be independent random vectors such that X; <Y;,
i=1,2,...,m. Suppose that X|s are i.i.d. and so also are Y;’s and Y;’s are continuous. Then,

in standard notation of order statistics

Xk) <hm Yoy, k=1,2,..,m.

(The question as to whether the theorem holds when the assumption that Y is continuous is

dropped, remains open.)
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